

The Evolution of Complex Attributes in a Species of Simulated Agents

Jay B. Nash, Gary B. Parker, Jim O'Connor

Abstract

In order for evolution to populate the planet with multiple species, two processes need to be at work. One is speciation, which involves the development of a new reproductively isolated species from an ancestral one. The other is that a reproductively isolated species can evolve to be more complex and potentially more capable over time.

Objectives

- Demonstrate that populations of agents can evolve complex attributes despite detrimental intermediate mutations
 - Intermediate evolutionary steps may negatively impact survival
 - The evolutionary process should overcome local minima and reach the positive final mutation
- Confirm that complex structures can evolve gradually
 - Determine the effect of detrimental intermediate steps on the evolutionary process
 - Test viability of multi-mutation trait development with varied levels of difficulty

Conclusion

- Complex evolutionary traits can develop despite temporary negative effects
 - Supports the idea of "fitness tunneling"
- >Questions raised and future work:
 - Investigate the evolutionary mechanisms behind traits beneficial to individuals but detrimental to populations
 - Introduce cooperative behaviors to align evolution with population-wide benefits

Methodology

- ➤ 3 scenarios designed to test evolution of enhanced sight requiring varying detrimental intermediate mutations:
- ✓ 2 mutations required (each with 10% energy penalty)
 - Strong selective pressure, few mutations required
- √ 5 mutations required (each with 2.5% energy penalty)
 - Moderate selective pressure, balanced approach
- √ 10 mutations required (each with 1% energy penalty)
 - Mild selective pressure, high complexity
- ➤ Environment simulated for a predefined time over multiple trials:
 - 500,000 turns for simpler mutation scenarios
 - 2,000,000 turns for the most challenging scenario (10 mutations)

Visualization of an Agent

Environment

- ➤ Grid-based simulation with agents performing one action per turn
 - Food resources randomly generated each turn
 - Survival depends on energy management
 - The age of an agent is defined by number of turns

Results

- Successful evolution of enhanced sight in scenarios with fewer required mutations (2 and 5 mutations).
- Agents did not achieve enhanced sight within 2 million turns when 10 mutations were required
 - Suggests increased complexity demands significantly more evolutionary time
- The number of required mutations impacts the process of evolution more than the severity of individual penalties
 - Evolution favors fewer evolutionary steps, even if individually costly

